
Code Generation and DSLs in Scheme

Presented by Grant Rettke

grettke@acm.org

1

The Background

• Fowler's "Language Workbench" article

http://martinfowler.com/articles/languageWorkbench.html

• DSLs (Domain Specific Languages) are problem specific tools;
language workbenches lets you implement DSLs

• Lisp is mentioned as a language workbench

• Poses a simple problem that may be solved using a DSL

DSLs don't have to be Turing Complete

• All code samples run on DrScheme v371 with the "Pretty Big"
language level

2

The Problem

• We've got a set of pre-existing domain classes

• There is data within flat text files we want to use to populate our
domain classes

• We need to come up with a good solution for allowing the user to
specify how to get the data from those flat text files into instances of
our domain classes

• We will implement a DSL to allow for the user to map the data to
the classes

3

The Input File

• Each input line represents an event, with fields delimeted by index

• The first four digits (0-3) indicate the event type: SVCL -> Service
Call, MNTC -> Maintenance, REPR -> Repair, and SLSC -> Sales
Call

• The next five digits (4-8) represent the client name

• The last four digits (9-12) represent the employee id

SVCL GRANT 1723

SVCL VICKY 0007

MNTC LAZY1 4242

REPR CRLES 1024

SLSC CEOGY 0100
4

The Approach

• Start by implementing the solution without any code generation

• Find the solution for a single case

• Generalize the solution for any case

• Common MDSD (Model Driven Software Development) approach

• Provide only working code examples: no theory!

• Tailored examples for object folks

• See class.ss: Classes and Objects in PLT Scheme

http://download.plt-scheme.org/doc/mzlib/mzlib.html

• Next slide, code: A domain class implemented using class.ss

5

Domain Classes v1: Code (domain1.ss)

(define service-call%
 (class* object% ()

 (define field-customer-name null)
 (define/public customer-name

 (case-lambda
 [() field-customer-name]
 [(value) (set! field-customer-name value)]))

 (define field-customer-id null)
 (define/public customer-id

 (case-lambda
 [() field-customer-id]
 [(value) (set! field-customer-id value)]))

 (super-new)))

6

Domain Classes v1: Comments

• Class are more about data, less about behavior. Data entities?

• Could use structs here instead

• Lot of duplicated code, not all properties were listed here

• There is an opportunity here to simplify declaration of properties

• Recall v1

• New Goal:

(define service-call%
 (class* object% ()

 (property customer-name customer-id)
 (super-new)))

7

Syntactic Extension: How macros work

• Macros are not functions, they do not compute, think of them as
"transformers"

• Functions can do nearly, but not all, that can be done using macros

• Macros extend the syntax of Scheme

• Macros work by transforming code supplied by the user into new
code

• They work by pattern matching on the arguments provided to the
macro

First match on name

Then match on arguments

• After finding a matching rule, a template is used to define the new
code

• Next slide, code: Single property syntax 8

Property v1: Code (domain2.ss)

(define-syntax (property stx)
 (syntax-case stx ()

 ((_ name)
#'(begin

 (define property-name null)
 (define/public name

 (case-lambda
 [() property-name]
 [(value) (set! property-name value)])))))

9

Property v1: Comments (domain2.ss)

• Takes a single argument, the name of the property

• Expands into a field and getter/setter function

• Notice that "property-name" is a private field that will be declared
multiple times; but without name collisions.

Hygienic macros keep things clean!

Introduced variable names are auto-magically replaced with
non-conflicting variable names

• Bug #1: Allows zero arguments

(property)

• Next slide, code: Notify user when not enough arguments are
provided

10

Property v2: Code (domain3.ss)

(define-syntax (property stx)
 (syntax-case stx ()

 ((_) (raise-syntax-error
#f

 "property requires at least one name"
 stx))

 ((_ name)
#'(begin

 (define property-name null)
 (define/public name

 (case-lambda
 [() property-name]
 [(value) (set! property-name value)])))))

11

Property v2: Comments (domain3.ss

• The stx is the syntax object that gets transformed by the macro

• Using this you can do very interesting things like introduce new
bindings into the users existing code

AKA Non-Hygienic macros

Risk stomping on existing bindings

• Use the syntax object to provide error messages that make sense
to the user

• Still want to allow multiple property names

• Next slide, code: Allow multiple property names using a recursive
macro

12

Property v3: Code (domain4.ss)

(define-syntax (property stx)
 (syntax-case stx ()

 ((_) (raise-syntax-error
#f

 "property requires at least one name"
 stx))

 ((_ name)
#'(begin

 (define property-name null)
 (define/public name

 (case-lambda
 [() property-name]
 [(value) (set! property-name value)]))))

 ((_ name names ...)
#'(begin

 (property name)
 (property names ...)))))

13

Property v3: Comments (domain4.ss)

• Bug #2: Allows expression rather than constants

• For example

• (property (+ 1 2))

• Next slide, code: Disallow expressions for property names

14

Property v4: Code (domain8.ss)

((_ name)
(begin
 (if (not (identifier? #'name))

(raise-syntax-error
#f
 "property names must be identifiers, not expressions"
 #'name))

 #'(begin
 (define property-name null)
 (define/public name

 (case-lambda
 [() property-name]
 [(value) (set! property-name value)])))))

15

Property v4: Comments (domain8.ss)

• Bug #3: Allows duplicate property names.

• For example

• (property (fnord fnord fnord))

• Not a problem

• Underlying class system does not allow duplicates

• User sees a sensible error message

16

How easy can we make it to create data entities?

• These are basically data entities

• They should be easy to define and use

• This may be a bit contrived, oh well, it is another macro

• Let creating data entities look like this

• (define-entity service-call%
 (customer-name customer-id))

• Next slide, code: A macro for defining data entities

17

define-entity V1: Code (domain5.ss)

• (define-syntax (define-entity stx)
 (syntax-case stx ()

 ((_ type (p ps ...))
#'(define type

 (class* object% ()
 (property p)
 (property ps ...)
 (super-new))))))

18

Populating the data entities: The Approach

• We've already got domain classes

• There is data within flat text files we will use to populate our domain
classes

• For each domain class, we will implement a function that given a
line of text will create an instance of the class and populate it using
the data formatted within that line of text

Responsible for knowing how to parse the data

• Another function will iterate over the lines of text

For each line of text it will take the first four digits of text (the
class type) and determine if a function exists that can turn this
line of text into a class via a lookup table (hash-map)

• This is not generalized code, it only handles one case

• Next slide, code: Raw code that populates a service-class object 19

Code: populating objects (domain6.ss)

• (define (parse-svcl-line line)
 (let ([instance (make-object service-call%)]

[name (substring line 5 14)]
 [id (substring line 14 24)])

 (send instance customer-name name)
 (send instance customer-id id)
 instance))

(define mappings (make-hash-table 'equal))
(hash-table-put! mappings "SVCL" parse-svcl-line)
(define (process-line line)
 (let* ([type (substring line 0 4)]

[handler (hash-table-get mappings type null)
 (if (not (null? handler))

(handler line)
 #f)))

20

Populating the data entities: The New Approach

• Re-factor code with end goal of generalization in mind

• Use two lookup tables

prefix->type use 4 digit prefix to find class type

type->populator use a class type to find a function that
populates it

• Will use the class type to create a generalized population method

• Will use field mappings to create generalized calls to the object's
setter methods

• Next slide, code: A revised object population approach with
generalization in mind

21

Revise existing code (domain6.ss)

(define prefix->type (make-hash-table 'equal))
(define type->populator (make-hash-table 'equal))
(hash-table-put! prefix->type

"SVCL" service-call%)
(hash-table-put! type->populator

service-call% parse-svcl-line)
(define (process-line line)
 (let* ([prefix (substring line 0 4)]

[type
(hash-table-get prefix->type prefix null)])

 (unless (null? type)
 (let

 ([populator
(hash-table-get type->populator type null)

 (unless (null? populator)
 (populator line)
 #f))

 #f))) 22

Responsibility the DSL

• Implement the (populator) function to populate the class using line
data

• Specify the (4 digit text) data to class type mapping

• Specify the class name to populator function mapping

• How it will look

(define-mapping
 service-call%
 "SVCL"
 (4 9 customer-name)
 (9 13 customer-id))
(define-mapping
 sales-call%
 "SLCL"
 (4 9 customer-name)
 (9 13 customer-id)) 23

Ultimate Goal

• (define-mapping
 service-call% "SVCL"
 (5 14 customer-name) (14 24 customer-id))

• Next slide, code: The DSL macro specification

24

define-mapping: Code (domain8.ss)

(define-syntax (define-mapping stx)
 (syntax-case stx ()

 ((_ type prefix
(start stop field) ...)

#'(begin
 (define (populator line)

 (let ([instance (make-object type)])
 (begin

 (send
instance

 field
 (substring line start stop))

 ...
 instance)))

 (hash-table-put! prefix->type prefix type)
 (hash-table-put! type->populator

type populator)))))
25

Conclusion

• Meta programming is generalizing and generating what
we already know how to do

• Scheme uses pattern matching and templating to generate code

Remarkably different from walking the tree! (No ASTs)

Leverage what you know: the entire DSL tool-chain is in
Scheme

Can embed Scheme code within the DSL itself!

• Typical problems solved by meta programming: System
configuration, Boilerplate code, Little languages

• These solutions are usually called "frameworks", regardless of the
type of meta programming used

• Where might you apply meta programming were you given the
chance? 26

