
A Basic Object System Using Macros

A Talk With Grant Rettke

grettke@acm.org

http://www.wisdomandwonder.com/

1

How To Roll A Basic Object System

• Features

Public Methods, Private Variables, No
Inheritance (Simple huh?!)

• Goals

Study Scheme, Macros, Language Constructs

Chat About It With My Friends

• Approach

Code First, Then Generation

Simplicity Trumps Efficiency

No Mystery Code!

2-11

Destination Code Features

• Primitive Object Implementation

• Methods and Variables

• Encapsulation

• Message Passing

• Duplicate variable/method name warning

• Built on "Stock" Language Features

• Reference: 5-prim-obj-stx-smpl.scm,
6-prim-obj-stx-smpl-tsts.scm

12-19

Destination Code Sample

(define-object person
 (variables

([name #f]
[age-years #f]

 [method-names-ls2 10]))
 (methods

([set-name [arg] (set! name arg)]
[get-name [] name]

 [set-age-years [arg] (set! age-years arg)]
 [get-age-years [] age-years]
 [age-in-days [] (* age-years 365)]
 [typed-name [] (cons (get-name) (class-name))]
 [method-names2 [] 'OVERWRITTEN]
 [typed-name2 [] 'OVERWRITTEN])))

• Brackets may be used anywhere parentheses are
used

Primarily to enhance readability
20-23

Step 1

• Exploring Primitive Language Features

Object Creation

Message Passing

Lexical Scope

• Reference: 1-prm-feat.scm

24-29

Object Creation

(define prim-obj-creation
 (λ ()

 (λ ()
 #t)))

• Goal: An object is a thing that can be instantiated

• This code is a function that returns a 1st class
function

• A 1st class function is a thing, virtually an "object"

• This is how objects will be instantiated in this
system

30-35

Message Passing

(define prim-obj-msg-passing
 (λ ()

 (λ (msg)
 msg)))

• Goal: An object is a thing that can receive a
message

• The first class function above can receive
messages

• This is how "message-passing" will occur in this
object system

36-40

Lexical Scope

(define prim-obj-lex-scope
 (λ ()

 (define x 11)
 (define y 12)
 (define frobnicate

 (λ (a b)
 (+ a b)))

 (λ (msg)
 (cons msg (frobnicate x y)))))

• Goal: Encapsulation, introduction of scope

• Lambda introduces lexical scope for internal
define (aka letrec) appearing immediately
after it

• The 1st class function returned by this function
inherits the lexical scope in which it was created (
x, y, and frobnicate)

41-46

prim-obj-lex-scope usage

(define obj (prim-obj-lex-scope))
(obj 'my-message)

• -> (my-message . 23)

• This is how objects may be instantiated and sent
messages

47-50

The Non-Macro Primitive Object

• Combine those three primitive features to
hand-code a primitive object

• Reference: 3-A-prim-obj.scm

51-53

The Non-Macro Primitive Object Code Sample

(define person
 (λ ()

 (define name #f)
 (define age-years #f)
 (define set-name (λ (arg) (set! name arg)))
 (define get-name (λ () name))
 <methods go here>
 (λ (msg . args)

 (case msg
 [(set-name) (apply set-name args)]
 [(get-name) (get-name)]
 [(set-age-years) (apply set-age-years args)]
 [(get-age-years) (get-age-years)]
 [(age-in-days) (age-in-days)]
 [else (error "message not understood" msg)])))

• The last λ expression is the "object"
54-56

Next Step: On To Generation

• High Level Macro Review

57-58

Macros 1 - Why

• Modify input code to produce new output code

• Seemingly superior to C style pre-processor
macros

• Change shape, and even order of evaluation of,
the code

59-63

Macros 1 - Why - Example

• In a conditional expression, every clause may not
be evaluated

• Consider a typical if-null-then check (illustrated by
the macro my-if moving forward)

(let ([fun null])
 (my-if (null? fun)

(printf "Can't call fun, it is null~n")
 (printf "x is ~a~n" (fun))))

• my-if could never be a function because it would
evaluate its arguments, resulting in a null pointer

• Reference: macros.scm

64-69

Macros 2 - What

• The object sent to the macro is called a syntax
object

• The macro itself is implemented by an object
called a transformer

70-72

Macros 2 - What - Example

• Syntax Object (everything enclosed by my-if)

(let ([fun null])
 (my-if (null? fun)

(printf "Can't call fun, it is null~n")
 (printf "x is ~a~n" (fun))))

• Transformer (this is the my-if macro)

[(_ clause true-body false-body)
#'(let ([c clause])

 (if c
true-body

 false-body))]

• #' is shorthand for surrounding the following shape
inside a call to syntax

73-78

Macros 3 - How

• The macro my-if takes an input form as its
argument

(my-if (null? fun)
(printf "Can't call fun, it is null~n")

 (printf "x is ~a~n" (fun)))

• De-structures it using pattern matching into 3
different parts: clause, true-body, and
false-body

(my-if clause true-body false-body)

• Defines a template for the new form (the resulting
syntax object)

#'(let ([c clause]) (if c true-body false-body))

79-85

Macros 3 - How

• Expands the template by replacing the pattern
variables with their actual values and
environment, and returns the resulting
syntax-object

(my-if (null? fun)
(printf "Can't call fun, it is null~n")

 (printf "x is ~a~n" (fun)))

• Expanding into

(let ((c (null? fun)))
 (if c

(printf "Can't call fun, it is null~n")
 (printf "x is ~a~n" (fun))))

86-90

Macros 3 - How - Visual

91

Two Kinds of Macros

• Hygienic

Guarantee that expansion will not redefine
existing name bindings

• Lexical Scope Twisting (Un-Hygienic)

By design allows you to modify existing
bindings

Why? To introduce a return statement, or
see "On Lisp" Anaphoric Macros

Anaphora: use of a grammatical substitute (as
a pronoun or a pro-verb) to refer to the
denotation of a preceding word or group of
words.

92-98

Hygienic Macro 'hm' Template Source

[(_ body)
#'(begin

 (define food 'perch)
 (define utensil 'fork)
 (printf "~a, ~a~n" food utensil)
 body)]

• _ is the first argument of the pattern, and is
always ignored. Using _ is both loved and hated
by Schemers

• body matches the entire form appearing as the
argument to hm

• Everything following #' is the template

99-102

Hygienic Macro 'hm' Template Body

(let ([food 'salmon]
[utensil 'spoon])

 (hm
(printf
"~a, ~a~n"

 food utensil)))

• Everything following hm, along with its
environment, is the argument for hm

103-106

Hygienic Macro 'hm' Template Expansion

(let ([food 'salmon]
[utensil 'spoon])

 (hm (printf "~a, ~a~n" food utensil)))

• Expands into

(let ([food 'salmon]
[utensil 'spoon])

 (begin
 [define food 'perch]
 [define utensil 'fork]
 (printf "~a, ~a~n" food utensil)
 (printf "~a, ~a~n" food utensil)))

• On the next page is the interesting part; the
printfs still use the correctly bound values

107-111

Hygienic Macro 'hm' Template Expansion

• [Review code in macro stepper and tracing
arrows]

• Prints "perch, fork", then "salmon, spoon"

112-114

115

Un-Hygienic Macro 'uhm' Template Source

[(_ body)
(with-syntax
 ([utensil

(datum->syntax #'body 'utensil)])
 #'(begin

 (define food 'perch)
 (define utensil 'fork)
 (printf "~a, ~a~n" food utensil)
 body))]

• with-syntax provides the functionality to twist
the lexical scope within the macro

• In this macro, utensil is inserted into the macro
body's environment

• On the next page, you will see that the macro
overrode the existing binding in the body 116-120

Un-Hygienic Macro 'uhm' Template Expansion

• [Review code in macro stepper and tracing
arrows]

• Prints "perch, fork", then "salmon, fork"

• The template inserts a new binding into the body
for utensil, breaking hygiene

121-124

125

Next Steps

• Implement a Primitive Object Syntax

• Implement Collision Detection

• Added Default Class Name & Methods Query

126-129

Prim Obj Stx: Pattern

(syntax-case stx (variables methods)
 [(define-object name

 (variables ([v-name v-val] ...))
 (methods ([m-name m-args m-body] ...)))])

• Reference: 4-prim-obj-stx.scm

130-132

Prim Obj Stx: Template

#'(define name
 (λ ()

 (define class-name (λ () 'name))
 (define method-names (λ () method-names-ls))
 (define method-names-ls

 '(class-name method-names m-name ...))
 (define v-name v-val) ...
 (define m-name (λ m-args m-body)) ...
 (λ (msg . args)
 (case msg

 [(class-name) (class-name)]
 [(method-names) (method-names)]
 [(m-name) (apply m-name args)] ...
 [else

(raise 'err)]))))

133

Prim Obj Stx: Support Code

• invalid/duplicate identifier detection

Implementing using identifier? and
bound-identifier=?

134-136

Thoughts

• Toys are for Learning

• The H-Word, and Other Hang-Ups

• Ideas Matter Most, Language Slavery, Innovation

• CoE: A Perfect "First Time"

• Thoughtful Teacher, Thoughtful Student

• As Difficult As [I] Make It

• The Midget vs. the Digits

137-144

Resources

• The Scheme Programming Language, Third
Edition. R. Kent Dybvig

Inspiration for this task, the "K&R" book for
Scheme

• PLT Scheme v4.02

mzscheme, DrScheme, Documentation,
Discussion List

This presentation is written in Scheme, see
bos-pres.scm and run.bat

Hit F5 to evalute and work with any code in the
REPL

Use the #scheme module language. All code
unit tested

• Web: Community-Scheme-Wiki, Schematics

145-154

Version

• $LastChangedDate: 2008-08-17 11:08:59 -0500
(Sun, 17 Aug 2008) $

• $LastChangedRevision: 2727 $

• $HeadURL:
svn://osiris/scheme-bos-clug/tags/2.01/bos-pres.scm
$

155

