
11/29/12Building Real Software: Technical Debt - How much is it Really Costing you?

swreflections.blogspot.com/2012/02/technical-debt-how-much-is-it-really.html

Developing and Maintaining Secure and Reliable Software in the Real World

Building Real SoftwareBuilding Real Software

Monday, February 13, 2012Monday, February 13, 2012

Technical Debt - How much is it Really Costing you?

The idea behind the technical debt metaphor is that there is a cost to taking short cuts (intentional

technical debt) or making mistakes (unintentional technical debt) and that the cost of not dealing with

these short cuts and mistakes will increase over time.

The problem with this metaphor is that with financial debt, we know how much it would cost to pay off

a debt off today and we can calculate how much interest we will have to pay in the future. Technical

debt though is much fuzzier. We don’t really know how much debt we have taken on – you may have

taken on a lot of unintentional technical debt – and you may still be taking it on without knowing it.

And we can’t quantify how much it is really costing us – how much interest we have paid so far, what

the total cost may be in the future if we don’t take care of it today.

Some people have tried to put technical debt into concrete financial terms. For example, according to

CAST Software’s CRASH report

“applications carry on average $3.61 of technical debt per line of code”.

For some reason, the average cost of Java apps was even higher: $5.42 per line of code. These

numbers are calculated from running static structural analysis on their customers’ code.

Sonar, an Open Source dashboard for managing code quality, also tries to calculate a technical debt

cost for a code base, again using static analysis findings like code coverage of automated tests,

code complexity, duplication, violations of coding practices, comment density.

Thinking of technical debt in this way is interesting, but let’s stop pretending that these are hard

numbers that we can use to make trade-off decisions. Although the numbers appear precise, they’re

arbitrary, guesses. And they assume that technical debt can be calculated by a tool looking at the

structure of the code. Unfortunately, dealing with technical debt is not that straightforward.

But if debt is too fuzzy to be measured in detailed cost terms, how do you know what kind of debt is

hurting you the most, how do you know when you have too much? Let’s look at different kinds of

technical debt, and how much they might cost you, using a fuzzier approach.

$$$ Making a fundamental mistake in architecture or the platform technology – you don’t find out until

too late, until you have real customers using the system, that a key piece of technology like the

database or messaging fabric doesn’t scale or isn’t reliable, or that you can’t scale out your

architecture like you need to because of core dependency problems, or you you made some

fundamentally incorrect assumptions on how the system is supposed to work or how customers will

use it. Now you have no choice but to start again or at least rewrite big chunks of the system to get it

to work or to keep it working, and you don’t have the time to do this properly.

$$-$$$ Error-prone code – the 20% of the code where 80% of bugs are found. Capers Jones says that

all big systems have a small number of routines where bugs and problems cluster, code that is hard

to understand and expensive and dangerous to change because it was done badly in the first place or

it went to hell over time because of the accumulation of short-sighted fixes and changes. Not rewriting

this code is one of the most expensive mistakes that developers make.

$-$$ The system can’t be easily tested – because you don’t have good automated tests, or the tests

are brittle and slow and keep falling apart when you change the code. Testing costs can make up

more than half of the cost of making any change or fix – sometimes testing can take much more time

and cost much more than making the fix – and testing costs tend to go up over time as you write

more code, as the system adds more interfaces and options.

$-$$ Not taking care of packaging and release and deployment. Relying too much on manual steps

and manual checks, leading to mistakes and problems in production, late nights. Like testing,

release and deployment costs don’t go away, they just keep adding up incrementally.

$-$$ Code that mysteriously works, but nobody is sure how or why – usually performance-critical or

Subscribe to this blogSubscribe to this blog

 Posts

 Comments

Jim Bird

I am an experienced software
development manager, project
manager and CTO focused on hard
problems in software development and
maintenance, software quality and
security. For the last 15 years I have
managed teams building and operating
high-performance financial systems.
My special interest is how small teams
can be most effective in building real
software: high-quality, secure systems
at the extreme limits of reliability,
performance, and adaptability.
Software that has to work, that is built
right, and built to last. I use this blog to
explore ideas and problems in software
development that are important to me.
To reflect and to find new answers.

View my complete profile

About MeAbout Me

This is my personal blog - it represents
my views and not those of my
employer.

DisclaimerDisclaimer

I also blog on application security
issues on the SANS Application
Security Street Fighter blog. You can
follow my posts here.

SANS Application SecuritySANS Application Security

Technical Debt - How much is it Really
Costing You?

You don't need Testers... or do you?

Building Security into a Development
Team

Application Security at Scale

Not Doing Code Reviews? What's your
Excuse?

Continuous Deployment is no Holy

Top PostsTop Posts

 More Next Blog» Create Blog Sign In

http://swreflections.blogspot.com/
http://martinfowler.com/bliki/TechnicalDebt.html
http://blogs.construx.com/blogs/stevemcc/archive/2007/11/01/technical-debt-2.aspx
http://theagileexecutive.com/2010/04/19/toxic-code/
http://blog.castsoftware.com/crash-report-exposes-millions-in-technical-debt/
http://www.sonarsource.org/
http://docs.codehaus.org/display/SONAR/Technical+Debt+Calculation
http://sqgne.org/presentations/2011-12/Jones-Sep-2011.pdf
http://www.blogger.com/profile/17371102366836131341
http://www.blogger.com/profile/17371102366836131341
http://software-security.sans.org/blog/author/jimbird
http://swreflections.blogspot.com/2012/02/technical-debt-how-much-is-it-really.html
http://swreflections.blogspot.ca/2012/04/you-dont-need-testers-or-do-you.html
http://swreflections.blogspot.ca/2012/05/building-security-into-development-team.html
http://swreflections.blogspot.ca/2012/05/application-security-at-scale.html
http://swreflections.blogspot.com/2011/05/not-doing-code-reviews-whats-your.html
http://swreflections.blogspot.com/2011/05/continuous-deployment-is-no-holy-grail.html
http://www.blogger.com/next-blog?navBar=true&blogID=5028009537158799436
http://www.blogger.com/home#create
http://www.blogger.com/
http://www.blogger.com/

11/29/12Building Real Software: Technical Debt - How much is it Really Costing you?

2/6swreflections.blogspot.com/2012/02/technical-debt-how-much-is-it-really.html

Posted by Jim Bird at 1:24 PM

Labels: quality, static analysis, technical debt

safety-critical low-level plumbing code written by a wizard who has long since left the company. It

might be beautiful code, but if nobody on the team understands it, it’s a time bomb – someday,

somebody is going to have to change it or fix it, or try to.

$-$$ Forward and backward compatibility adapters and compromises. This is necessary, short-term

debt. But the cost rises the longer that you have to maintain these compromises.

$-$$ Out of date libraries and middleware stack – you’ve fallen behind on applying patches and

upgrades. Even if the code that you have now is stable, you run some risk of unpatched security

vulnerabilities. The longer that this goes on, the further behind you are, the higher the risk – at some

point if the software is no longer supported or supportable, and your hand is called.

$-$$ Duplicate, copy-and-paste code. This is one of the bugaboos of technical debt and static

analysis tools. Almost everybody has it. But how bad is it, really? The cost depends on how many

clones developers have made, how often they need to be changed, how many subtle differences there

are between the different copies, and how easily you can find the copies and keep track of them. If

the developer who made the copies is still on the team and does a good job of keeping track of all of

them, it doesn't cost much if anything.

$-$$ Known, outstanding bugs in code and unresolved static analysis findings. The cost and risk

depends on how many bugs and warnings you have, and how nasty they are. But if they are real

problems, they should have been fixed by now. Is a bug really a bug if it isn't bugging anyone?

$-$$ Inefficient design or implementation, “throwing hardware at it”, using too much memory or

network bandwidth or CPU. Hardware is cheap, but these costs can add up a lot as you scale out.

$ Inconsistent use of programming idioms and patterns – developers either didn’t understand the

existing patterns, or didn’t like them and introduced new ones, or didn’t care and just wanted to get

their change done. It's ugly, and it can be frustrating for developers. But the real cost of living with the

situation is often less than trying to clean it all up.

$ Missing or poor error handling and exception handling. It will constantly bite you in the ass in

production, but it won’t cost a lot to at least get it mostly right.

$0.01 Hard coding, magic numbers, code that isn’t standards compliant, poor element naming,

missing comments, and code that needs tidying. This is a pain in the ass, but it’s the kind of thing

that is easy to clean up as part of standard refactoring work.

$0.01 Out of date documentation – another issue that is commonly considered in technical debt. But

let’s be honest, most programmers don’t read documentation anyways. If nobody is using it, get rid of

it. If people are using it, why isn’t it up to date?

$0.00 Hand-rolled code that could have and should have been done using built-in language features or

libraries, or existing framework or common services. It’s disappointing when somebody recognizes it,

but unless this hand-rolled code has lots of bugs in it, it’s a sunk cost, not a cost that is increasing

over time.

There are different kinds of debt, with different costs. Figuring out where your real costs are, and what

to do about it, isn't easy.

21 comments:

Anonymous said...

Thank you for the insightful post. Please do keep on writing.

February 15, 2012 8:05 AM

Brian M said...

Unfortunately nothing new here (meant in a nice way!)

Wearing most of those T shirts :(

Thanks for putting it in an article - compulsory reading for all our developers now :)

:)

Grail

Developers just don't go to Security
Conferences

You can't be Agile in Maintenance?

Devops has made Release and
Deployment Cool

Everything I can find about Software
Maintenance

Has Static Analysis reached its Limits?

Diminishing returns in software
development and maintenance

agile development (44)

books (8)

Construx (8)

Continuous Deployment (8)

devops (13)

incremental development (7)

iterative development (5)

Kanban (7)

leadership (3)

maintenance (16)

OpenSAMM (4)

OWASP (17)

project management (15)

quality (35)

reliability (8)

risk management (12)

SANS (17)

Scrum (10)

security (54)

software development (19)

static analysis (7)

teams (1)

testing (4)

XP (10)

LabelsLabels

Search

Search This BlogSearch This Blog

http://www.blogger.com/profile/17371102366836131341
http://swreflections.blogspot.com/2012/02/technical-debt-how-much-is-it-really.html
http://www.blogger.com/email-post.g?blogID=5028009537158799436&postID=6095579005371903403
http://swreflections.blogspot.com/search/label/quality
http://swreflections.blogspot.com/search/label/static%20analysis
http://swreflections.blogspot.com/search/label/technical%20debt
http://swreflections.blogspot.com/2012/02/citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.1537&rep=rep1&type=pdf
http://www.blogger.com/share-post.g?blogID=5028009537158799436&postID=6095579005371903403&target=email
http://www.blogger.com/share-post.g?blogID=5028009537158799436&postID=6095579005371903403&target=blog
http://www.blogger.com/share-post.g?blogID=5028009537158799436&postID=6095579005371903403&target=twitter
http://www.blogger.com/share-post.g?blogID=5028009537158799436&postID=6095579005371903403&target=facebook
http://swreflections.blogspot.com/2012/02/technical-debt-how-much-is-it-really.html?showComment=1329321920742#c4701041885397143766
http://swreflections.blogspot.com/2011/05/continuous-deployment-is-no-holy-grail.html
http://swreflections.blogspot.com/2010/07/developers-just-dont-go-to-security.html
http://swreflections.blogspot.com/2011/10/you-cant-be-agile-in-maintenance.html
http://swreflections.blogspot.com/2011/12/devops-has-made-release-and-deployment.html
http://swreflections.blogspot.com/2010/11/everything-i-can-find-about-software.html
http://swreflections.blogspot.com/2010/08/has-static-analysis-reached-its-limits.html
http://swreflections.blogspot.com/2011/11/diminishing-returns-in-software.html
http://swreflections.blogspot.com/search/label/agile%20development
http://swreflections.blogspot.com/search/label/books
http://swreflections.blogspot.com/search/label/Construx
http://swreflections.blogspot.com/search/label/Continuous%20Deployment
http://swreflections.blogspot.com/search/label/devops
http://swreflections.blogspot.com/search/label/incremental%20development
http://swreflections.blogspot.com/search/label/iterative%20development
http://swreflections.blogspot.com/search/label/Kanban
http://swreflections.blogspot.com/search/label/leadership
http://swreflections.blogspot.com/search/label/maintenance
http://swreflections.blogspot.com/search/label/OpenSAMM
http://swreflections.blogspot.com/search/label/OWASP
http://swreflections.blogspot.com/search/label/project%20management
http://swreflections.blogspot.com/search/label/quality
http://swreflections.blogspot.com/search/label/reliability
http://swreflections.blogspot.com/search/label/risk%20management
http://swreflections.blogspot.com/search/label/SANS
http://swreflections.blogspot.com/search/label/Scrum
http://swreflections.blogspot.com/search/label/security
http://swreflections.blogspot.com/search/label/software%20development
http://swreflections.blogspot.com/search/label/static%20analysis
http://swreflections.blogspot.com/search/label/teams
http://swreflections.blogspot.com/search/label/testing
http://swreflections.blogspot.com/search/label/XP

11/29/12Building Real Software: Technical Debt - How much is it Really Costing you?

3/6swreflections.blogspot.com/2012/02/technical-debt-how-much-is-it-really.html

February 17, 2012 3:18 AM

Russell Allen said...

I was very surprised to see "poor element naming" so low on your list? If this includes

method names and class names, my personal experience suggests this can be a very

expensive form of debt, and one which is relatively cheap to pay back with instant

dividends. (Ctrl+R+R anyone?)

February 17, 2012 4:05 AM

D&E Photography said...

My "day job" is information security, and you blog is one of my regular reads. Frankly

most of your posts are more relevant to security that those from the security world that I

read! :)

Why? Because quality software processes matter, should be part of any SDLC and affect

the integrity and availability of every enterprise IT ecosystem.

Great blog, and I very much hope you will continue into the foreseeable future.

February 17, 2012 4:22 AM

Philip Oakley said...

"problem with this metaphor is that with financial debt.." The flip side to the coin (sic) is

the way most folk misunderstand financial debt - Choose your favourite bank - financial

debt is just as misunderstood!

February 17, 2012 5:58 AM

RobKraft said...

An Excellent post. Creating a list of the specific sources of technical debt was well done.

Adding the relative cost of those forms of debt is masterful.

Rob Kraft

My SoftDev blog

February 17, 2012 6:42 AM

Jim Bird said...

@Russell,

You make a good point - poor element naming can be more expensive. A badly named

class or method or variable at least delays someone's understanding of what the code is

really doing. These delays are waste and can add up over time. Worse, it can cause

people to make incorrect assumptions, overlook a problem or make a mistake especially

when they are dealing with older code that they're not familiar with - code that has

changed over time. We do look out for this in code reviews and spend time coming up

with good names (which can be an art in itself). As you point out, it's cheap and easy to

fix when you recognize it.

@Philip,I still think there is a fundamental difference between technical debt and financial

debt. It's the difference between not knowing and not doing anything about something.

Governments and companies and people who take on too much debt know it and can

measure it - they just choose to pretend otherwise. But the worst kinds of technical debt

are the kinds that teams take on without knowing it: fundamental and unintentional

mistakes in design or platform technology selection or making mistakes in

implementation because they don't know the language or the design problems yet. Even

when you're trying to do everything carefully, when you're trying not to cut corners, you

can still be taking on debt. And the costs of these mistakes can be huge.

February 17, 2012 7:11 AM

Jeremy M said...

Documentation looks like it's one of those things you can do without, but its abscence is

a bomb with a long fuse. As long as there are still enough people on the team who were

there when the code was written not having any documentation does not really hurt you

because there's always someone who can explain what the code is meant to be doing.

But if your team expriences a high degree of turn-over / wastage you can suddenly find

yourself in a position where the business is crying out for something to be changed and

there's no way to change it safely because no one understands what the application

actually does.

▼ 2012 (59)

► November (4)

► October (4)

► September (5)

► August (10)

► July (8)

► June (6)

► May (4)

► April (5)

► March (4)

▼ February (4)

Agile development teams
CAN build secure
software

Technical Debt - How
much is it Really
Costing you...

Agile’s Customer Problem

Source Code is an Asset,
Not a Liability

► January (5)

► 2011 (31)

► 2010 (21)

► 2009 (17)

► 2008 (3)

Blog ArchiveBlog Archive

http://swreflections.blogspot.com/2012/02/technical-debt-how-much-is-it-really.html?showComment=1329477486923#c8328626776730870841
http://www.russellallen.info/
http://swreflections.blogspot.com/2012/02/technical-debt-how-much-is-it-really.html?showComment=1329480304754#c5107715279138892516
http://www.blogger.com/profile/17630049499328395073
http://swreflections.blogspot.com/2012/02/technical-debt-how-much-is-it-really.html?showComment=1329481359884#c5293629229648433044
http://swreflections.blogspot.com/2012/02/technical-debt-how-much-is-it-really.html?showComment=1329487128869#c7206384301745752585
http://www.blogger.com/profile/09787233472482944767
http://csharpdeveloper.wordpress.com/
http://swreflections.blogspot.com/2012/02/technical-debt-how-much-is-it-really.html?showComment=1329489729576#c4334417040278892626
http://www.blogger.com/profile/17371102366836131341
http://swreflections.blogspot.com/2012/02/technical-debt-how-much-is-it-really.html?showComment=1329491514265#c1880004040080111890
javascript:void(0)
http://swreflections.blogspot.com/search?updated-min=2012-01-01T00:00:00-08:00&updated-max=2013-01-01T00:00:00-08:00&max-results=50
javascript:void(0)
http://swreflections.blogspot.com/2012_11_01_archive.html
javascript:void(0)
http://swreflections.blogspot.com/2012_10_01_archive.html
javascript:void(0)
http://swreflections.blogspot.com/2012_09_01_archive.html
javascript:void(0)
http://swreflections.blogspot.com/2012_08_01_archive.html
javascript:void(0)
http://swreflections.blogspot.com/2012_07_01_archive.html
javascript:void(0)
http://swreflections.blogspot.com/2012_06_01_archive.html
javascript:void(0)
http://swreflections.blogspot.com/2012_05_01_archive.html
javascript:void(0)
http://swreflections.blogspot.com/2012_04_01_archive.html
javascript:void(0)
http://swreflections.blogspot.com/2012_03_01_archive.html
javascript:void(0)
http://swreflections.blogspot.com/2012_02_01_archive.html
http://swreflections.blogspot.com/2012/02/agile-development-teams-can-build.html
http://swreflections.blogspot.com/2012/02/technical-debt-how-much-is-it-really.html
http://swreflections.blogspot.com/2012/02/agiles-customer-problem.html
http://swreflections.blogspot.com/2012/02/source-code-is-asset-not-liability.html
javascript:void(0)
http://swreflections.blogspot.com/2012_01_01_archive.html
javascript:void(0)
http://swreflections.blogspot.com/search?updated-min=2011-01-01T00:00:00-08:00&updated-max=2012-01-01T00:00:00-08:00&max-results=31
javascript:void(0)
http://swreflections.blogspot.com/search?updated-min=2010-01-01T00:00:00-08:00&updated-max=2011-01-01T00:00:00-08:00&max-results=21
javascript:void(0)
http://swreflections.blogspot.com/search?updated-min=2009-01-01T00:00:00-08:00&updated-max=2010-01-01T00:00:00-08:00&max-results=17
javascript:void(0)
http://swreflections.blogspot.com/search?updated-min=2008-01-01T00:00:00-08:00&updated-max=2009-01-01T00:00:00-08:00&max-results=3

11/29/12Building Real Software: Technical Debt - How much is it Really Costing you?

4/6swreflections.blogspot.com/2012/02/technical-debt-how-much-is-it-really.html

February 17, 2012 7:46 AM

Graham Harris said...

Another form of debt is not explicitly adding code units to a project but relying on project

search paths to retrieve the code unit at compile time.

February 17, 2012 7:55 AM

Jim Bird said...

@Jeremy,

I'm becoming more skeptical about documentation and the value of documentation over

time. Even with teams that have high turnover. Because documentation, even if there is

any, is almost always incomplete and out of date. You can't trust it. So you have to do

what programmers have always had to do: you get somebody to show you how the

system works, you find the code, and you start walking through it.

February 17, 2012 9:59 AM

Anonymous said...

Disagree with:

$0.00 Hand-rolled code that could have and should have been done using built-in

language features or libraries, or existing framework or common services. It’s

disappointing when somebody recognizes it, but unless this hand-rolled code has lots of

bugs in it, it’s a sunk cost, not a cost that is increasing over time.

Every line of code has to be maintained in some fashion. Even if it is solid... someone

has to keep an eye on it.

February 17, 2012 10:11 PM

Dodgy_Coder said...

Yeah I like your point on inline documentation (if noone is reading it then take it out).

Personally, if I see a section of code with a lot of documentation/comments then its sort

of a warning sign that the code may not be clearly written, or not obvious what is

happening. With a well written piece of code or module, it should be clear what it is doing

without looking at the comments.

February 18, 2012 5:23 AM

Dicky said...

Good list of technical debt. I hope that all the stakeholders including both developers and

non developers would remember that there is a cost that we have to pay each time we

take a short cut to complete a new features

February 19, 2012 11:14 AM

Anonymous said...

Everyone is so worried about phrases and the latest trends - just write software people.

Too much time spent on meaningless details while other teams are banging out software

hits one after the other.

February 19, 2012 3:07 PM

David N said...

Listing these out is a tedious, yet necessary task, in many environments, it seems. I've

recently had a bout with a tech-debt-ridden project.

Fortunately, it will be degraded to a POC. I thank the almighty (and our management) for

the hind-sight.

February 20, 2012 1:26 AM

Mike K said...

I'd disagree with the ordering or your priorities, it's too reminiscent of a cowboy-coding

mentality. Of course "error prone-code" is a source of errors, but pointing that out is a bit

like telling developers to "avoid making mistakes" without telling them how.

Almost every subsequent point is a symptom, if not a cause, of the processes that lead

http://swreflections.blogspot.com/2012/02/technical-debt-how-much-is-it-really.html?showComment=1329493607118#c1920385972724064679
http://www.blogger.com/profile/02347064336170852363
http://swreflections.blogspot.com/2012/02/technical-debt-how-much-is-it-really.html?showComment=1329494119931#c6880577742069577629
http://www.blogger.com/profile/17371102366836131341
http://swreflections.blogspot.com/2012/02/technical-debt-how-much-is-it-really.html?showComment=1329501575259#c2923440432142916029
http://swreflections.blogspot.com/2012/02/technical-debt-how-much-is-it-really.html?showComment=1329545461210#c3342542025624588803
http://www.blogger.com/profile/14418022725678218844
http://swreflections.blogspot.com/2012/02/technical-debt-how-much-is-it-really.html?showComment=1329571400568#c1226785181111549047
http://www.blogger.com/profile/00321030386495287983
http://swreflections.blogspot.com/2012/02/technical-debt-how-much-is-it-really.html?showComment=1329678884325#c1873209255642189478
http://swreflections.blogspot.com/2012/02/technical-debt-how-much-is-it-really.html?showComment=1329692862984#c310417425432367404
http://blog.davidna.com/
http://swreflections.blogspot.com/2012/02/technical-debt-how-much-is-it-really.html?showComment=1329729996859#c1420012922186332673

Building Real Software: Technical Debt - How much is it Really Costing you?

5/6swreflections.blogspot.com/2012/02/technical-debt-how-much-is-it-really.html

to error-prone code. I'll pick out a few:

Poor Element naming: The developer didn't think too much about the code he/she was

writing. Unclear element names, or elements or objects used twice for different purposes,

can really confuse someone who is trying to fix a bug.

Lack of testability: What hope have you of fixing that error-prone routine if you can't test it

fully.

Duplicate/Copy/Paste code: Twice as much code means roughly twice as many bugs.

And when you fix one copy, are you sure you fixed the same bug in all the other copies -

are you sure you didn't miss one?

Hand rolled code: Don't reinvent the wheel. Someone has probably done it better than

you, and they've tested it, too, which you probably haven't. Also: more lines code usually

means more bugs.

Inconsistent use of coding patterns: How can a developer hope to understand, debug and

fix code if each developer uses their own standards and the developer has to wade

through and understand fifteen different usage patterns?

Poor error handling: Your software will be silently failing, doing the wrong thing, and you'll

never know. Very dangerous if you ever write software that has anything to do with

financial transactions.

I know that some developers will happily spend days gold-plating their code, but I think

this post veers too far in the other direction. The worst kind of technical debt is code that

only one developer understands and can fix, and good standards and methodologies are

all about avoiding that very problem.

February 20, 2012 3:44 AM

Jim Bird said...

@Mike K,

Don't get me wrong, I'm not saying that it's ok to write bad code. What I am trying to say

is that most of what people think of as technical debt (copy and paste, long methods,

bad element names) is the kind of stuff that is easy to see and (usually) easy to fix and it

should be fixed when you have the chance. But if you're working on a large code base

over a long period of time, you're going to have to put up with some of it. Sure, it adds up,

but it can be paid back.

The real cost of technical debt is mostly hidden: making a fundamental mistake in

technology or architecture, or not being able to fix the root cause of most of your bugs

because you don't understand where they care coming from. This is the kind of debt that

can take a long time to recognize, and it can be crippling.

February 20, 2012 9:13 AM

Anonymous said...

About copy/paste reuse ... Idunno, my experience is that it can get quite costly. The

original programmer is almost never available when such things need fixing, and nobody

keeps track of all duplications. Finding occurences based on regular expressions is at

best error-prone, and usually programmers using a lot of copy and paste also write tests

with a lot of holes in them, so you can't rely on existing tests to find errors in duplicated

blocks of code.

I'm not so sure about inconsistent use of idioms and patterns. Unless you allow for a

certain level of inconsistency, your code will never evolve. If something is consistently

done in a bad way throughout the codebase, it's stupid to start changing every place at

once, but IMO it's similarly stupid to enforce the same bad solution in places where

changes occur or in new code.

Out of date documentation is IMO also a higher cost than you estimate, but on a different

level/from a different POV. Maintaining documentation, unless you have a standard that

lets you get away with very focused, slim documentation, is too costly for most projects.

However, misleading javadoc- or doxygen-generated documentation is costly in that

clients of the wrongly documented APIs will not only spend a lot more time than

necessary for very simple issues, but also waste time of other team members, who know

the code and don't need the documentation. This can IMO increase the cost by an order

of magnitude.

http://swreflections.blogspot.com/2012/02/technical-debt-how-much-is-it-really.html?showComment=1329738255037#c1099942244688405048
http://www.blogger.com/profile/17371102366836131341
http://swreflections.blogspot.com/2012/02/technical-debt-how-much-is-it-really.html?showComment=1329758009072#c2119817396197533805

11/29/12Building Real Software: Technical Debt - How much is it Really Costing you?

6/6swreflections.blogspot.com/2012/02/technical-debt-how-much-is-it-really.html

Newer Post Older PostHome

Subscribe to: Post Comments (Atom)

Post a Comment

February 23, 2012 1:26 AM

Anonymous said...

Jim, great discussion. The greatest service you have done with your ranking is to

(correctly) place architectural errors as the most expensive you can make. Of course the

irony here is that most organizations do not even bother to design their computer

systems - they just start coding.

And now we see the true source of the stat that 80% of IT projects fail - the lack of

architecture.

February 28, 2012 12:35 PM

Gustavo Chaves said...

Jeff Thalhammer agrees with the shortcomings of the technical debt metaphor and

suggests that technical insurance is a better one. Worth a read.

March 8, 2012 8:54 AM

Jim Bird said...

@Gustavo Cool, thanks for the link on technical insurance, that's an interesting take on

the problem

March 9, 2012 8:38 AM

© 2008-2012 Jim Bird. Awesome Inc. template. Powered by Blogger.

http://swreflections.blogspot.com/2012/02/agile-development-teams-can-build.html
http://swreflections.blogspot.com/2012/02/agiles-customer-problem.html
http://swreflections.blogspot.com/
http://swreflections.blogspot.com/feeds/6095579005371903403/comments/default
http://www.blogger.com/comment.g?blogID=5028009537158799436&postID=6095579005371903403
http://swreflections.blogspot.com/2012/02/technical-debt-how-much-is-it-really.html?showComment=1329989173914#c3972526858352906716
http://swreflections.blogspot.com/2012/02/technical-debt-how-much-is-it-really.html?showComment=1330461329995#c6553775741178437615
http://www.blogger.com/profile/10239255508398850551
http://www.modernperlbooks.com/mt/2011/11/technical-quality-is-an-insurance-policy.html
http://swreflections.blogspot.com/2012/02/technical-debt-how-much-is-it-really.html?showComment=1331225692555#c6019408122345916792
http://www.blogger.com/profile/17371102366836131341
http://swreflections.blogspot.com/2012/02/technical-debt-how-much-is-it-really.html?showComment=1331311086748#c900181190147078423
http://www.blogger.com/

